

Translation

Move 6 units up
When you translate up or down, you change the y

Move 6 units left
When you translate left or right, you change the x

Reflection over the

x and y axis

A reflection flips

 the figure across a line to create a mirror image.

Reflect across the y axis.
When you reflect across the y axis, the x value becomes its opposite.

Reflect across the x axis.
When you reflect across the x axis, the y value becomes its opposite.

180° Rotation about the origin

A rotation turns the figure around a point, called the center of rotation.

When you rotate 180° both the x and y values go to their opposites
$(\mathbf{x}, \mathbf{y}) \rightarrow(-\mathbf{x},-\mathbf{y})$

90° Rotation about the origin

A rotation turns the figure around a point, called the center of rotation.

When you rotate 90° clockwise both the x and y switch and the x which is the new y value is its opposite
$(\mathbf{x}, \mathbf{y}) \rightarrow(\mathbf{y},-\mathbf{x})$

When you rotate 90° counter clockwise both the x and y switch and the y which is the new x value is its opposite $(\mathbf{x}, \mathbf{y}) \rightarrow(-\mathbf{y}, \mathbf{x})$
290° rotations is a 180° rotation. 390° rotations is 270°

Don't forget

- Reflection over the x axis $(x, y) \rightarrow(x,-y)$
- Reflection over the y axis $(x, y) \rightarrow(-x, y)$
- 90° Counterclockwise $(x, y) \rightarrow(-y, x)$
- 90° Clockwise $(x, y) \rightarrow(y,-x)$
- 180° Rotation $(x, y) \rightarrow(-x,-y)$
- Translation s units up/down $(x, y) \rightarrow(x, y+s)$
- Translation s units right/left $(x, y) \rightarrow(x+s, y)$
- Dilation with a scale factor of s and the origin as the center of dilation
$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{sx}, \mathrm{sy})$

